
Weather Analysis
Aaron Abromowitz, Simi Augustine, David Camacho, Ivan Chavez

Introduction 1
Project Overview 1
Database 2
Dashboard 6
Exploratory Data Analysis 9
Predictive Models 12
Conclusion 17

Introduction
Information about the weather has always been useful for people to know. Knowing the

temperature, humidity, or chance of rain, can assist people with planning their scheduling or
choosing what clothes to wear. These factors can be based on the time of year or recent
weather trends. In addition, it is even more important to understand weather trends over time
with current proposed rates of climate change.

Project Overview
Our project has three components: a database of weather data, a dashboard to visualize

the data, and models to predict future weather.
The original data came from Kaggle. We put it into 7 tables in a MySQL database:

city_attributes, temperature, pressure, humidity, wind_speed, wind_direction, and
weather_description. This allowed us to easily visualize and analyze the data.

We made a Dashboard in Tableau to help us visualize trends in the data. This was useful
in seeing the seasonality in the data, how that changes per city, and how this seasonality
changed for each variable. In addition, it allowed us to visualize model assumptions so that we
could make smarter decisions about the model as well.

Lastly, we wanted to use modeling techniques to see if we could predict future data. We
tested four different models that used the seasonality in weather data: Basic Linear Model, Holt
Seasonal Model, SARIMA Model, and Vector Autoregression (VAR) Model. We held out data
from 2017 to use as new data for validation.

https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data/data


Database
The data from Kaggle was in the form of seven CSV files: information about each city,

humidity, pressure, temperature, verbal description of the weather, wind direction, and wind
speed at each hour of the day between 10/01/2012 and 11/30/2017. Each of our CSV’s had the
cities in column format as can be seen below.

First, we imported all csv files to 7 corresponding tables to mysql database and applied
normalization in order to reduce redundancy and improve data integrity. Also, we were
interested only in Texas cities. So we extracted Dallas, San Antonio and Houston data for all the
6 attributes and created the tables with the below table structure.

● Wind_speed (135753 rows)



datetime,DATETIME,
City, TEXT
Wind_speed,INT

● Wind_direction (135755 rows)
datetime,DATETIME,
City, TEXT
Wind_direction,INT

● Pressure (135673 rows)
datetime,DATETIME,
City, TEXT
Pressure,INT

● Humidity (134755 rows)
datetime,DATETIME,
City, TEXT
Humidity,INT

● Temperature (135751 rows)
datetime,DATETIME,
City, TEXT
Temperature,DOUBLE

● Weather_description (135756 rows)
datetime,DATETIME,
City, TEXT
Weather_description,TEXT

● City_attributes
City, TEXT
Country,TEXT,
Latitude,DOUBLE,
Longitude,DOUBLE

A unique index was created on the combination of datetime and city columns for all the tables.
However, these tables were independent with no primary key and no foreign keys. This makes
the joins between these tables complex and perform slower. So, we decided to create a table
with City and datetime columns with a primary key City_datetime_id and to create foreign key
relationship with all other tables on the City_datetime_id as shown below:



While this is normalized for data integrity, it requires complex joins to query different tables to
get all values. This can impact read performance, especially with large datasets and makes it
highly normalized for reporting and analysis purposes.

So, we decided to denormalize for improved query performances. Considering all tables have
data for the same values of city and datetime. We combined all columns to one table with a
unique combination and indexed on city and datetime fields. Also, we found there are only 39
unique weather descriptions. Hence for improved storage and to reduce redundancy we created
a separate table with these unique descriptions. So we came up with 3 tables, of which one
table “weather” has all weather information for a city at a particular hour of the day.
Weather_desc has 39 rows that are all unique weather descriptions , City has 3 rows for Dallas,
San Antonio and Houston.

Final database model we came up with is as shown below:

An insert/update script was developed to join these tables and create the final database model.
The initial challenge we had was city being a text column, and the join between these tables on
city and datetime timed out. However once the column datatype was changed to varchar(20),
join queries ran faster and the timeout issue was resolved.



In order to further optimize the joins, we added a unique index on city and datetime column for
all the tables.
● Indexes can drastically improve the performance of queries.
● Unique indexes enforce uniqueness of the data by not allowing duplicate values in the

column or combination of columns on which the index has been created.
● Execution time for queries that join between the tables:

Before index creation: 0.101 seconds
After index creation: 0.0016 seconds

The Insert/Update script shown below was run for all tables to combine data to one weather
table.

The script ran faster with the indexes and a unique combination of 135,756 rows were added to
the weather table with all attributes from 6 independent tables. Since the temperature was in
Kelvin, we updated the temperature to Farenheit before we moved further for data analysis.

We also created views that join the description and city table, also group by the date_time field
on day and month for easier data access.



Having a normalized database gave us the data that we could then use in the data
visualization and model creation aspects of the project. The indexes and views allowed us to
access this data quickly.

Dashboard
To visualize the data and further our analysis, we used Tableau to make a Dashboard.

Temperature, humidity, pressure, and wind speed are the most important data to our analysis,
so those were included in the Dashboard. This data was plotted over the time period of the data
set to show trends.



The data for the dashboard was established through a connection to the MySQL
database, which took a few steps to set up. Before making the connection, you had to install a
driver for MySQL. And in order to publish the dashboard however, the MySQL data needed to
be extracted and saved off in a .hyper file. The dashboard could then be published online so
that others can see it: Dashboard.

The Dashboard is interactive. It allows for the user to select which city they’d like to see
the data for: Dallas, Houston, or San Antonio. The default is to show data for all three cities
superimposed.

https://public.tableau.com/app/profile/aaron.abromowitz/viz/TexasWeatherDashboard/WeatherStatistics?publish=yes




Exploratory Data Analysis
Data analysis and model creation were performed in the R programming language. In

order to access the data from R, we established a connection to the MySQL database using the
RMySQL package. This allowed us to directly interact with our database without needing to
export the data.

As part of our analysis it was crucial to perform exploratory data analysis to understand
the data we were working with. Our EDA is based solely on the training data set which spans
from 2012-2016 (leaving 2017 out). Because we had to consolidate our values by the day
instead of by the hour since our data was too big, we used the average of humidity, pressure,
wind_speed, and wind_direction while using the max temperature for each day. Additionally, the
following units of measurement were used for each metrics: temp = fahrenheit, humidity =
percentage, pressure = hPa, wind_speed = m/s, and wind_direction = meteorological degrees.

The first stage of EDA involved conducting a generalized view of the response and
predictor variables as seen above. Our intent was to identify any correlation between the
response and independent variables as well as identifying any collinearity between the predictor
variables. We did not identify any collinearity and only found a negative correlation between
temp and pressure. The only predictor variable that was missing from this plot was time. We



decided to give this its own plot since we knew it’d play a crucial role as this data set was
appropriate for time series modeling.

After plotting temp with respect to date, we were not surprised that a pattern over the
four years was established. Across all three cities, temperature was at its lowest during the end
and beginning of the year and at its highest towards the middle of the year. The scatter plot
(above) along with the box plots (below) were a clear indicator that we may want to utilize
time-series models to predict our test set (2017).



Finally, to conclude our EDA, we plotted time with respect to the other predictors (below)
to see if we could identify a trend of some sort. As we can see, there wasn’t much of a
discernible pattern.



The key takeaway from our exploratory data analysis was that there was no collinearity
present, there was a negative linear correlation between temp and pressure, and the correlation
between temp and date was a seasonal one that allowed for the application of time series
models to be implemented.

To determine how related the temperature is to the time variable, we looked at
Autocorrelation. This is looking at the correlation value between the current time and the time X
days ago. The further back in time the data goes, the less correlated it will be. Here is the plot
of the lag term vs the correlation.



Since a correlation value of above 0.5 is fairly correlated, it appears that temperature
data is highly correlated with past data. The correlation value is above 0.6 even going back 25
days. To confirm this, we ran a Durbin-Watson test and calculated a DW metric of 0.22729. This
tells us that since the DW value is very close to 0 there is positive autocorrelation. The overall
conclusion is that a time series approach will make sense.

Predictive Models
The models used maximum daily temperature as the variable of interest. Our goal was

to accurately predict today’s maximum temperature, given the prior day’s data along with data
back to 2012. As mentioned previously, the potential explanatory variables included:
temperature, pressure, humidity, wind speed, wind direction, and weather description. These
could be from the previous day, two days ago, etc. all the way back to the beginning of the
dataset.

We compared four models to see which did the best job at predicting future data. The
Root Mean Squared Error (RMSE) for the 2017 data was used as the comparison. The training
and analysis of the models was only performed on data from 2012-2016. This allowed the future
data to have no influence over our model creation. We also only limited our model creation and
testing to Dallas, but the same approach could be used for other cities.

The first model we created was a simple linear model. This was intended as a basic
model to compare the Time Series models against. It used month as a categorical variable,
which functioned as a way to add seasonality to the data. The best way of knowing today’s
weather is to know what the weather was like yesterday. So we included the temperature going
back 3 days, as well as yesterday’s humidity. Adding data any further back or using either wind
speed or air pressure didn’t seem to improve model performance. So the final form of the basic
linear model that we chose was:



Temp ~ Month + Temp(day-1) + Temp(day-2) + Temp(day-3) + Humidity(day-1)

The coefficient table for the linear model is as follows:

When we calculated the RMSE for data in 2017, the value was 5.912. This is roughly
10% of an average temperature (in Fahrenheit), so a good starting point for a simple model.

Our next model was a Holt’s Seasonal model. This is a time-series forecasting technique
that focuses solely on the time and the response variable (temp). This model can be tuned by
altering the smoothing, leveling and seasonal components. However, we left each of these
thresholds at their default values. The only feature we altered was specifying our model to be an
additive one instead of a multiplicative one. Specifying that our model was an additive one
meant that our pattern was roughly constant throughout the series. That is, our temperatures
were consistently cold during the beginning of the year and hot during the middle of the year
across all four years.



After feeding our training set into the model, we can observe the forecasted vs the actual
temperatures for 2017 (above). Our MAE (Mean Absolute Error) was 14.04 degrees which
translates to say that on average, the forecast is off by 14.04 degrees. This is not a desirable
MAE, however, we could definitely tune it if more time was allowed. Our RMSE was 16.32 which
is slightly higher because this metric penalizes larger errors by squaring them first. In
conclusion, this model was the weakest out of all of the models that we attempted. However, we
could potentially improve the predicted values by fine tuning its features.

The next model that we worked on was the SARIMA model. The SARIMA model is an
extension for the ARIMA model which stands for autoregressive integrated moving average; the
difference between the two is that the SARIMA accounts seasonality while the ARIMA model
doesn’t. When we were performing our EDA we found signs of autocorrelation and with
understanding that our data would have seasonality in it since it's a weather dataset we decided
to move forward with the SARIMA model. Similar to the holt seasonal model, our SARIMA
model focused only on the time and temp variable. The SARIMA model adds in three new auto
parameters that the ARIMA doesn’t have those are autoregression, differencing, and moving
average. After doing some EDA such as running ACF/PACF plots and running the auto.arima
function in R we’re able to tune our model to perform optimally with our data. There are four
seasonal elements in the SARIMA model that we needed to tune P - seasonal autoregressive
order, D - seasonal difference order, Q - seasonal moving average order, and m - the number of
time steps for a single seasonal period. We set these values at P = 5, D = 0, Q = 1, and m = 1.
For our final SARIMA model we had a RMSE value of 5.43787 and a MAE value of 3.978499.
Below is a summary of our final SARIMA model:



The final Time Series model that we tried is called a Vector Autoregressive (VAR) model.
This type of model uses time series approaches for the main variable (temperature), but also
uses other variables (humidity, air pressure, wind speed). The model is included in the vars
package in R. Some useful parameters include the amount of steps to go back (p), whether to
include seasonality, any exogenous variables to include, and if a constant or trend term should
be included as well.

After some testing using different parameters, we determined that a well performing
model set p = 12, to not include seasonality, and to include both a constant and a trend term.
The formula for the model looked like this:

temp = temp.l1 + humidity.l1 + pressure.l1 + wind_speed.l1 + temp.l2 + humidity.l2 + pressure.l2 + wind_speed.l2 + temp.l3 +
humidity.l3 + pressure.l3 + wind_speed.l3 + temp.l4 + humidity.l4 + pressure.l4 + wind_speed.l4 + temp.l5 + humidity.l5 +
pressure.l5 + wind_speed.l5 + temp.l6 + humidity.l6 + pressure.l6 + wind_speed.l6 + temp.l7 + humidity.l7 + pressure.l7 +
wind_speed.l7 + temp.l8 + humidity.l8 + pressure.l8 + wind_speed.l8 + temp.l9 + humidity.l9 + pressure.l9 + wind_speed.l9 +
temp.l10 + humidity.l10 + pressure.l10 + wind_speed.l10 + temp.l11 + humidity.l11 + pressure.l11 + wind_speed.l11 + temp.l12 +
humidity.l12 + pressure.l12 + wind_speed.l12 + const + trend

There are lag terms going from 1 to 12 for each of the four variables (temp, humidity,
pressure, and wind_speed). At the end is the const and the trend terms. A parameter table
was also included, which included both estimates and p-values:



As one would expect, the p-values generally decrease as the lag increases. In addition,
the coefficient values seem to match up surprisingly well with the values from the basic linear
model. However, the p-values for the VAR model seem to be smaller.

After we created our four models, we calculated RMSE for each using the 2017 data.
The results of this comparison were as follows:

Model RMSE

Basic Linear 5.912

Holt Seasonal 16.32

SARIMA 5.46

VAR 5.784

The best performing model on 2017 data was the SARIMA model. The worst performing
model was the Holt Seasonal model. Most of the models, including the Basic Linear model
which we used as a baseline, had an RMSE of below 6. This implies ~10% of errors in our
models, which is a fairly good predictive value.



Conclusion
As we look to the future, the need for more precise weather predictions grows,

particularly in the face of climate change and it remains a vital and dynamically evolving
discipline that significantly impacts both daily lives and long-term planning across various
sectors. The focus of our project was on the curation, visualization, and forecasting of
meteorological data. We began by importing the data into a MySQL database, providing a
structured platform for storage and management. For visualization, we leveraged Tableau's
robust analytics capabilities to create insightful and interactive representations of the weather
data. Lastly, to project future weather trends, we employed time series analytical models, which
enabled us to forecast upcoming conditions with a degree of precision.


